Tie And Jeans

Vanishing Electronics

In this course, students discover the basics of electronics design and assembly. They use this knowledge to build their own simple flashing LED using solder-free breadboards. By diving into the assembly of these projects, students learn about impedance, resistance, conductivity, and circuit design through personal, hands-on engagement, opening up incredible possibilities for creative projects.

That was the first description I wrote for what became our Makers program. This was a perfunctory bit of text written a year before our first class, tossed onto a Google form and into oblivion. The audience was exclusively parents, crassly intended to trigger connotations of learning and complexity for an unproved course.

In that first year we did some of what that blurb promised, but it wasn’t the focus of the course at any point beyond the second week. We built Squishy circuits and made 555-based projects, but I guarantee I never used the word impedance in class.

That same year I took the first MOOC version of MIT’s 6.002. Well before we hit the midterm, I was struggling to keep up with increasingly complex circuits, dusting off my integral calc skills, and churning through paper at a fantastic rate. Coming home from teaching Makers to a new lecture or problem set triggered new waves of teacher-panic. Had I really promised to teach this material to 7th graders?

As part of the FabLearn cohort, I’m exploring broad plain of electronics with an eye on how it fits into the modern/developing #makered landscape. It’s got to be central, right? Even though we advocate for the value of cardboard prototyping and physical construction, the big name tools are all complex electronic systems.

Well, maybe not.

From the 70s into the 90s, there was a rich field of interesting projects and creative experimentation that was only open to people with a functional literacy in electronics and electrical engineering. My sense is that in the last decade, the growth of cheap, flexible, accessible micro-controllers has taken control of the sophisticated projects that used to drive students deeper into electronics. While that trend leaves the electronics domain with fewer “exclusive” projects, the hurdles facing a novice haven’t changed much. While the internet makes it easier to share schematics and video tutorials, electronics still requires parts and precision. I can download the schematics for a transistor radio or a preconfigured disk image that transforms the RaspberryPi into an FM Transmitter.

Deep electronics knowledge opens up incredible possibilities. I’ll submit as evidence any of ch00ftech’s posts or Jeri Ellsworth’s Short Circuits. But in an Arduino-rich world, there’s far fewer low-end projects that require those skills. Instead, those electronics skills become mandatory when a project needs to exceed the constraints of what’s possible with a micro-controller. When a project needs to use less power, take up less space, respond with less lag, scale out at with less cost, then you’ll need the skills to design and build complex, task-optimized circuits.

Here’s the chicken-egg of learning electronics in 2013. Every basic circuit in a Forrest Mims notebookcan be duplicated with an Arduino and a tiny selection of components, using copy-pasta code and breadboard illustrations. In that world, how much discrete electronics knowledge does a novice need?

In the months I’ve spent looking at this problem, I’ve slammed repeatedly against a cognitive wall. I examine my practice, the projects my students pursue, the projects shared throughout the wider #makered community, and I see a role for electronics that’s smaller, more constrained and highly task specific. When I interrogate those findings, I keep coming back to a enduring conflict. Are my observations accurate, or does my weak understanding of electronics obscure a larger and more complicated story?

I can’t be sure. I’ll be sharing my look into the current market of “learn electronics!” kits in a later post, along with exploring the uneasy border between circuit simulators and Minecraft. But throughout those, know that this question – am I missing the real story? – lies under every observation.

Advertisements

Single Post Navigation

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: